RAMAKRISHNA MISSION VIDYAMANDIRA

Belur Math, Howrah - 711202

$\begin{array}{c} \text{M. Sc ADMISSION TEST - 2024} \\ \text{MATHEMATICS} \end{array}$

Date: 23/07/2024 Full Marks: 40 Time: 12 noon -1:00 pm

<u>Instructions</u> for the candidates						
estions.						
has 4 options out of which	only one is correct.					
orrect option on Answer Sh	eet.					
nust be very clear – if it is	smudgy or not clear, no mar	ks will be awarded.				
nswer carries 2 marks and	for each incorrect answer 1	mark will be deducted.				
uestions will not be awarded	l.					
ers will be considered as wro	ong answer.					
not allowed.						
quare unit) of the triangle fond x axis is	rmed by the pair of straight	lines $8x^2 + 10xy + 3y^2 + 26x +$				
(b) 0.5	(c) 0.25	(d) 0.125.				
$r \sin \theta = 2$ in spherical polar cular cylinder, line .	coordinates represents					
It trajectories of the family $cx + 1$, (where c being a parameter, (where c being a parameter, (where c being a parameter c , (where c being a parameter)	rameter) eter) er)	= 0, where f is a parameter; is				
poordinate of $(1, 2, 3, 4)$ in \mathbb{R} $(\mathbf{b}) (0, 1, 0, 0)$,		d basis $\{(1,0,0,0),(0,2,0,0),$ (d) $(1,1,1,1)$				
linear operator represented (b) 2	by the matrix $\begin{bmatrix} -1 & -2 & -1 \\ 0 & 6 & 1 \\ -1 & 13 & 0 \end{bmatrix}$	1] is (d) 0.				
		ar operator represented by the matrix $\begin{bmatrix} -1 & -2 & -1 \\ 0 & 6 & 1 \\ -1 & 13 & 0 \end{bmatrix}$ (b) 2 (c) 1				

(b) none

(d) 1.

(c) 2

(0,1) and (1,0,0) to (1,1)?

(a) infinitely many

7.	Which of the following for a data set containing		e degree M of the Lagrar	nge's interpolating polynomial				
	(a) M and n are always							
		e, in some cases, to have $M < n$. e, in some cases, to have $M > n$.						
	(d) No equality or inequality relation exists between M and n .							
8.	Which of the following statements is correct for the Newton Raphson method for solving equations of the form $f(x) = 0$ in an interval $[a, b]$?							
	(a) It is a fixed point method.							
(b) Convergence is guaranteed whenever f is twice differentiable.								
(c) Convergence is guaranteed whenever there is a unique root in the interval [a, b].(d) Convergence is guaranteed unconditionally.								
9.	A particle P possesses two constant velocities u and v , such that u is always parallel to a fixed direction OX and v is always perpendicular to the radius vector OP . The path of the particle is a							
	conic of eccentricity (a) $\frac{u}{v}$	(b) $\frac{v}{u}$	(c) $\frac{u^2}{v}$	(d) $\frac{v^2}{u}$				
10.	nected by the relation $ab = c$							
	(a) $xy = \frac{4}{c^2}$	(b) $x^2 = 4cy$	(c) $\sqrt{x} + \sqrt{y} = \sqrt{y}$	$(\mathbf{d}) \ xy = \frac{c^2}{4}$				
11.	In which of the following sets, is the curve $y = e^x(\cos x + \sin x), x \in (0, 2\pi)$ concave upwards?							
	(a) $(0, \frac{\pi}{2}) \cup (\frac{5\pi}{4}, 2\pi)$	(b) $(0, \frac{\pi}{4}) \cup (\frac{5\pi}{4}, 2\pi)$	(c) $(0, \frac{\pi}{2}) \cup (\frac{3\pi}{4}, 2\pi)$	(d) $(0, \frac{\pi}{4}) \cup (\frac{3\pi}{4}, 2\pi)$				
12.	The value of the integral $\int_C \frac{dz}{z^2}$, where C is the positively oriented circle $z = 2e^{i\theta}$ $(-\pi < \theta \le \pi)$ about the origin is:							
	(a) 1	(b) 2	(c) -1	(d) 0				
13.	$f: \mathbb{R}^2 o \mathbb{R}$ is defined a	as $f(x,y) = x^2 - y^2$. Wh	nich of the following stat	ements is not true?				
	(a) $f(x,0)$ has a minimum at $(0,0)$.							
	(b) $f(0,y)$ has a maximum at $(0,0)$.							
	(c) $f(x,y)$ has a sadd (d) Hessian of f is po							
14	Consider the statement	, ,						
17.	(A): Every Riemann integrable function defined on $[0,1]$, must have a primitive on $[0,1]$.							
	(B): Every function having a primitive on [0, 1], must be Riemann integrable on [0, 1].							

Which of the following statements is true?

(a) Both of (A) and (B) are true.(b) (A) is true and (B) is false.(c) (B) is true and (A) is false.(d) Both of (A) and (B) are false.

	(a) $\sum_{n=1}^{\infty} (-1)^n$							
(b) $\sum_{n=1}^{\infty} \frac{1}{n}$								
	(c)	$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$						
	(d)	$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$						
16.	Let	$f: \mathbb{R} \to \mathbb{R}$ satisfi	es $ f(x) - f(y) - x + y \le$	$\leq \sin(x-y ^2)$	for all $x, y \in \mathbb{R}$. Then f is		
	(a)	differentiable or	\mathbb{R} with bounded derivat	ive.				
	(b)) Lipschitz, but not necessarily differentiable with bounded derivative.						
	(c)) uniformly continuous, but not necessarily Lipscitz.						
	(d)	continuous, but	not necessarily uniformly	continuous.				
17.	The	function $d: \mathbb{R}^2$	$\langle \mathbb{R}^2 \to [0,\infty) \text{ is not a me} \rangle$	etric on \mathbb{R}^2 , where	en			
	(a)	$d((x_1,y_1),(x_2,y_1))$	$(x_1) = \max\{ x_1 - x_2 , y_1 - y_2 \}$	$-y_2 \}.$				
	(b)	$d((x_1, y_1), (x_2, y_2)) = \min\{ x_1 - x_2 , y_1 - y_2 \}.$						
	(c)	$d((x_1, y_1), (x_2, y_2)) = (x_1 - x_2 ^2 + y_1 - y_2 ^2)^{1/2}.$						
	(d)	$d((x_1, y_1), (x_2, y_1))$	$(x_1) = x_1 - x_2 + y_1 - y_2 $					
18.	Sup	pose G is an infi	nite cyclic group, then G	has				
	(a)	a) only one generator						
	(b)	exactly two generators						
	(c)	(c) more than two but finitely many generators						
	(d)	infinitely many generators.						
19.	Let has	S_3 be the symme	naving 3 element	s, then the center of S	3			
	(a)	1 element	(b) 2 elements	(c) 3 eler	ments	(d) 6 elements		
20. In the ring of all integers, which of the following options is correct								
	(b)	there is only one maximal ideal						
(c) there are exactly two maximal ideals								

15. Which of the following series is conditionally convergent?

(d) there are infinitely many maximal ideal.